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Abstract—Supporting the most popular cryptocurrency, the
Bitcoin platform allows its transactions to be programmable via
its scripts. Defects in Bitcoin scripts will make users lose their
bitcoins. However, there are few studies on the defects of Bitcoin
scripts. In this paper, we conduct the first systematic investigation
on the defects of Bitcoin scripts through three steps, including
defect definition, defect detection, and exploitation tracing. First,
we define six typical defects of scripts in Bitcoin history, namely
unbinded-txid, simple-key, useless-sig, uncertain-sig, impossible-
key, and never-true. Three are inspired by the community, and
three are new from us. Second, we develop a tool to discover
Bitcoin scripts with any of typical defects based on symbolic
execution and enhanced by historical exact scripts. By analyzing
all Bitcoin transactions from Oct. 2009 to Aug. 2022, we find
that 383,544 transaction outputs are paid to the Bitcoin scripts
with defects. The total amount of them is 3,115.43 BTC, which
is around 60 million dollars at present. Third, in order to trace
the exploitation of the defects, we instrument the Bitcoin VM to
record the traces of the real-world spending transactions of the
buggy scripts. We find that 84,130 output scripts are exploited.
The implementation and non-harmful datasets are released.

Index Terms—bitcoin, blockchain, smart contract

I. INTRODUCTION

Supporting the most popular cryptocurrency, the Bitcoin
platform provides peer-to-peer payment in a decentralized
way [36]. Its transactions for spending and receiving bitcoins
are programmable via its scripts written in the bitcoin trans-
action script language, named Script [9]. Script, a stack-based
language without loops, is not Turing-complete.

However, like other programs, the Bitcoin scripts may have
defects that can lead to bitcoin loss. For example, once a user
receives some bitcoins from the other, they will be locked in
the transaction’s output script. That is, the program controls
the bitcoins. If the output script is buggy, attackers may
take control of this payment by exploiting the output script’s
defects. Actually, there are already many such attacks. For
example, [43] identified 884 bitcoin addresses with simple
private keys, which are worth around $100K, and 21 of them
were drained. We define it as the simple-key defect in this
paper.

Although many studies on Bitcoin have been done, in view
of money transferring [34], [35], [23], the security in the con-
sensus and transaction [44], [40], and the software reliability
[24], [45], only a few studies examine Bitcoin scripts with a
focus on the quantitative statistics of non-standard scripts [10],
stored content [32], and symbolic verification [29]. Unfortu-
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nately, to the best of our knowledge, none of the existing
studies has investigated the defects of Bitcoin scripts. In this
paper, we conduct the first systematic investigation on the
defects of Bitcoin scripts. It is non-trivial to detect all buggy
Bitcoin scripts due to the following challenges.
C1: Lack of systematic defect definitions for Bitcoin
scripts. To the best of our knowledge, there is no systematic
study on the defects in Bitcoin scripts, and the security of
Bitcoin scripts has not received much attention. Moreover,
defining a defect requires an in-depth study of various common
patterns in Bitcoin scripts. It should also be considered with
the identity attributes and economic motives behind their code
patterns. Therefore, the definition of the defects is still blank.
To fill the gap, we need to first clearly define the defects and
then design a detection approach accordingly.
C2: Lack of automated tools for detecting defects in
Bitcoin scripts. Bitcoin scripts can be divided into standard
ones and non-standard ones. Bitcoin community defines seven
standard script types (aka patterns) [21]. The scripts that do
not match the patterns are considered non-standard. For the
standard ones, we can use regular expressions to learn and
check execution semantics when spending it. The execution
semantics of the non-standard ones are diverse due to the
infinite number of possible combinations of operation codes
(opcodes). Moreover, as for the P2SH/P2WSH [21] scripts,
their output scripts only show the hash values of the ex-
act scripts. This makes it difficult to detect defects in the
P2SH/P2WSH scripts. As shown in the statistics in August



TABLE I
DETECTED BUGGY BITCOIN SCRIPTS AS OF AUG. 2022.

(#TXOUT IS THE COUNT OF TRANSACTION OUTPUT SCRIPTS)

Defect # TxOut Bitcoin

Attacker-spendable

Unbinded-txid 77,141 55.67
Simple-key 1,484 21.89
Useless-sig 38,284 0.21
Uncertain-sig 43 0.25

Never-spendable Impossible-key 205,320 3,002.28
Never-true 61,272 35.12

2022 [8], P2SH scripts take up 45% of all scripts in one
month. Hence, a tool for automatically checking all Bitcoin
scripts, especially for P2SH/P2WSH/non-standard ones, is
highly desired.
C3: Lack of verification and tracing of the defects. Once we
detect the defects in the Bitcoin scripts, we find it challenging
to prove the correctness of the detection since there is no
ground truth. And it is also difficult to learn or prove whether
the defects are exploited. Hence the method of verification and
tracing is needed.

To detect and trace the defects of Bitcoin scripts and ad-
dress the above challenges, we propose BSHUNTER, which
consists of three modules, including defect definition, defect
detection, and exploitation tracing, as shown in Figure 1.
Defect Definition. Since Bitcoin is designed for payment,
we regard the issues in Bitcoin scripts that make the own-
ers lose their control of payment as defects. Moreover, the
defects could be attacker-spendable or never-spendable. After
inspecting Bitcoin scripts, being inspired by the studies [10],
[43] and community examples [17], we define four attacker-
spendable defects (unbinded-txid, simple-key, useless-sig, and
uncertain-sig) and two never-spendable defects (impossible-
key and never-true), solving C1. Three of them (simple-key,
unbinded-txid, and never-true) are inspired by the community,
and the other three (impossible-key, useless-sig, uncertain-sig)
are new from us. We also provide real-world examples for
ease of explanation. For each defect, we propose the detection
patterns in terms of symbolic expressions (§IV-D), which is
the basis for automated detection as we intend to use the rule
to match various scripts with different semantics. The details
of defects are given in §III, and the threat to the validity of
the definition is discussed in §VII.
Defect Detection. We propose a defect detection approach for
Bitcoin scripts, solving C2. At first, we propose an address-
based method as a naive solution. It uses the address interfaces
of Bitcoin clients to detect partial defects from standard
scripts. However, since the actual semantics of non-standard
scripts are unknown, we develop a symbolic virtual machine
for Bitcoin scripts, which follows the execution model in
Bitcoin [17]. It begins with an initial state, gives symbolic
inputs to a Bitcoin script, and operates its state according to
the opcodes in the Bitcoin script. Once it faces conditional op-
erations (e.g., If-Else), it will generate the branches according
to different conditions. Then, it uses the Z3 SMT solver [20] to
confirm whether the symbols can meet the conditions to spend

the bitcoins (will be detailed in §IV-C). In this way, we can
explore all the possible branches and states of a Bitcoin script.
Moreover, as for the P2SH and P2WSH scripts, we conduct a
historical-transaction-based database to find the exact scripts
before execution. Finally, we define the symbolic patterns of
defects (§IV-D) to match the final symbolic states (e.g., the
used keys, the symbolic variables of signature). If any patterns
match the states, then the script is considered to contain the
defects corresponding to the patterns.
Exploitation Tracing. BSHUNTER instruments a Bitcoin
full node to trace the real-world spending transactions of
the buggy scripts, solving C3. Towards each transaction, we
trace the operations and stacks for each step of execution in
the Bitcoin VM. After that, we use several exploiting rules
to check whether the defects are exploited. Note that the
exploiting rules are based on actual execution and concrete
input in the real world, unlike the symbolic values during
detection.
Result. We apply BSHUNTER to 2,005,704,690 Bitcoin
scripts from the first 749,000 blocks in Bitcoin, which contains
all the output scripts from October 2009 to August 2022. We
find that 383,544 output scripts in Bitcoin are with defects. Our
proposed method can increase the number of detected scripts
by 43% and the amount by 592% compared to the address-
based method. The detailed results are shown in Table I.
Among these scripts, 116,952 scripts are attacker-spendable,
and 266,592 scripts are never-spendable. In total, the detected
buggy Bitcoin scripts are making users lose 3,115.43 BTC,
around 60 million dollars at present. The largest part of the
increment (2609.36 BTC) comes from the 23 impossible-
key scripts, which will be discussed in §VII. Moreover, by
tracing the relevant transactions, we find that 99.6% bitcoins
of the attacker-spendable scripts have been exploited. Note
that anonymity in Bitcoin means that we cannot determine
if exploits are actually by attackers or not. We release the
implementation and the non-harmful data to prevent other
users from losing their money1.
Contribution. We conduct the first systematic study on defects
of Bitcoin scripts with the following contributions.

• We define six types of defects of Bitcoin scripts:
unbinded-txid, simple-key, useless-sig, uncertain-sig,
impossible-key, and never-true, with real-world examples.

• We design a defect detection approach based on symbolic
execution and enhanced by historical exact scripts.

• We propose an exploitation tracing method to verify and
trace the real-world exploitation of the defects.

• We apply our tool to real-world Bitcoin scripts and
find 383,544 buggy output scripts where most attacker-
spendable bitcoins have been exploited.

II. BACKGROUND

A. Bitcoin Transaction

Transaction Structure. Figure 2(a) shows the structure of
Bitcoin transactions. Each transaction consists of two lists:

1https://UnsafeBTC.com
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the input list (inputs) and the output list (outputs). Each
input includes a pointer and a script. The pointer refers to a
previous output. Each output includes a value of Bitcoin and
a script. Note that the scripts in this paper are called input
scripts and output scripts for ease of understanding. In some
references [10], they are also called unlocking and locking
scripts, respectively.
Transaction Validation. In Bitcoin, despite the coinbase input
that issues bitcoin, each input needs to be validated whether
it can spend the previous output. The validation is based
on the execution of scripts, which will be detailed in the
next subsection. If and only if all the inputs are valid, the
transaction is successful and recorded into the blockchain.
Note that Bitcoin transactions are all anonymous. Therefore,
in the rest of this paper, once we find defects exploited in
transactions, we cannot confirm whether the exploits are by
attackers or owners.

B. Bitcoin Script

Figure 2(b) shows the validation of a Bitcoin transaction,
which is based on Bitcoin scripts. To simplify the introduction,
we assume that both transactions (TX A and B) have only one
input and one output. We also omit the output value. In this
figure, TX A has been confirmed, and TX B is being validated
whether it has the authority to spend the output of TX A.
Input Validation. The validation of input in TX B consists of
3 steps: (1) The blockchain client first checks out the output
through the PrevOut Pointer (Pointer of Previous Output). If
the output is an unspent transaction output (UTXO), the client
will read its script for the next step. Actually, the bitcoin clients
(C++/Golang/etc.) maintain a database of Unspent Transaction
(TX) Outputs. Once the output in TX A is spent by TX B,
the database will delete A:0 (the No.0 output in TX A) and
then insert B:0 (the No.0 output in TX B). (2) The UTXO’s
script will be linked with B’s input script, and then the linked
script will be executed in the Bitcoin script engine. (3) If and
only if the script execution has no failure and returns True on

TABLE II
EXAMPLE OF BITCOIN SCRIPT EXECUTION

Operation Stack After Execution
PUSH [signature] [signature]
PUSH [pubkey] [signature],[pubkey]
DUP [signature],[pubkey],[pubkey]
HASH160 [signature],[pubkey],[pubkey-hash]
PUSH [hash] [signature],[pubkey],[pubkey-hash],[hash]
EQUALVERIFY [signature],[pubkey]
CHECKSIG True

the top of the stack, the input is valid. Otherwise, the input is
invalid.
Example. To help to understand, an example of a Bitcoin
script is introduced as follows. The input script is “PUSH
[signature] PUSH [pubkey]”, and the output script is “DUP
HASH160 PUSH [hash] EQUALVERIFY CHECKSIG”. The
script execution is shown in Table II. After executing the
operation code in order, the top of the stack is True, and then
the input is valid.
Script Type. Commonly used Bitcoin scripts have the same
patterns. Bitcoin community [21] defines eight types of Bitcoin
scripts: (1) Pay-to-Public-Key: The output script records the
public key. The input script is required to give the signature.
(2) Pay-to-Public-Key-Hash: The output script records the
hash value of the public key. The input script is required to
give the public key and the signature. (3) Multiple-signature:
The output script records N public keys. The input script is
required to give K (less than N) signatures. (4) Pay-to-Script-
Hash: The output script records the hash value of a raw script.
The input script is required to give the corresponding raw
script for validation. After validating the script hash, the script
itself will be executed. (5) Pay-to-Witness-Public-Key-Hash:
It is similar to the Pay-to-Public-Key-Hash. The difference is
that some of the scripts are moved into a segregated witness
structure in the transaction. (6) Pay-to-Witness-Script-Hash:
It is similar to the Pay-to-Script-Hash, with the script in the
segregated witness. (7) Null-data: The transaction output only
records some data into the blockchain. This kind of script
cannot be spent. (8) Non-standard: The scripts that do not
match any of the above patterns are non-standard scripts.

For a Pay-to-Script-Hash or Pay-to-Witness-Script-Hash
script, the actual executing script falls into two transactions,
thus resulting in the challenge of defect detection. We detail
it in §IV. Note that the Bitcoin community only provides the
standard as advocacy rather than a limitation, protecting users’
freedom, which has resulted in many non-standard scripts.
Moreover, both standard and non-standard scripts could have
defects introduced in §III.

III. DEFECT DEFINITION

We collect and define the defects after examining the
examples from the community (e.g., [10], [43], [17]) and
discuss the threat to the definition and classification in §VII.
General Definition. Since the major function of the Bitcoin
script is to give users control of the payment [36], we focus
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on the buggy Bitcoin scripts with the following characteristics:
(1) Valuable: The script must carry non-zero bitcoins, which
makes it valuable for the user. (2) User loses control: If the
control of the spending script is not just owned by the user,
or no one can spend it, it is regarded as buggy. Consequently,
we divide the defects into two categories, namely attacker-
spendable and never-spendable.

Since only the output script is used to lock the bitcoins,
rather than the input script, we focus on the output scripts.
The following subsections introduce four attacker-spendable
defects (unbinded-txid, simple-key, useless-sig, and uncertain-
sig) and two never-spendable defects (impossible-key and
never-true), respectively. Note that the ideas of three defects
(simple-key, unbinded-txid, never-true) are inspired by the
references from the community [10], [43], [17], and the other
three (impossible-key, useless-sig, uncertain-sig) are newly
proposed by us. The differences are introduced at the end of
this section.

A. Unbinded-txid

Definition. In Bitcoin, “txid” is the hash value of the
body of a Bitcoin transaction. The entire transaction’s
outputs, inputs, and scripts are hashed as txid. The txid can
be used by several operation codes (e.g., CHECKSIG,
CHECKMULTISIG, CHECKSIGV ERIFY , and
CHECKMULTISIGV ERIFY ). For example, when
executing CHECKSIG, the VM will call the signature and
public key from the stack to decrypt them in order to check
whether the decrypted result is the txid. In other words,
once the script needs to verify the txid, then the output is
binded to it, which will not be tampered with by an attacker.
On the contrary, the transaction output has the risk of being
tampered with. Hence, we regard such unbinded-txid scripts
as attacker-spendable.

Example. As shown in Figure 3, before a transaction
is confirmed in the blockchain, it will be propagated into
the network. An attacker could listen to the network for
the pending unbinded-txid transactions, then change the out-
puts to steal the Bitcoin. Once the attacker’s transaction is
confirmed, the original transaction will be discarded, los-
ing the Bitcoin. For a real on-chain example, one transac-
tion [1] pays 1 BTC to the script as “HASH256 PUSH
6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d61
90000000000 EQUAL”, which can be spent by giving the
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pre-image of the hash value. Any attacker who listens to the
network for the pre-image can change the output script to steal
that 1 BTC.

B. Simple-key

Definition. If the script requires the signature from a simple
private key, it has a defect that is attacker-spendable. Previous
studies [13], [12] have studied the impact of random number
seeds on public-key security. On the contrary, in this paper,
we focus on the users who do not use the random number
seeds but generate simple private keys based on personal
preferences, e.g., simple integers.

Example. Figure 4 shows an attacking example. The user
generates a simple private key as he like, e.g., the integer
1. Then he uses the corresponding public key to conduct
the output script to receive bitcoins. In the meanwhile, the
attacker can enumerate several simple values to generate the
simple private keys and the corresponding scripts. Once the
attacker finds a transaction output of those scripts, he can sign
a transaction to spend it, stealing the bitcoins. The on-chain
examples will be introduced in §VI-C.

C. Useless-sig

Definition. Bitcoin provides the operation code of sig-
nature verification for users. After the script execution of
CHECKSIG and CHECKMULTISIG, the verification
result will be pushed back into the stack. However, if the
verification result has no relevance to the final top of the stack,
it is useless.

Example. As an on-chain example, one transaction [2]
pays 0.0001 BTC to a Pay-to-Script-Hash script. And the
exact executing script of it is “PUSH <pubkey> CHECKSIG
NOT”. Since the CHECKSIG is followed by a NOT , its
verification result is inverted. In this case, giving a wrong
signature can unlock the bitcoins in that script. Hence, the
CHECKSIG is regarded as useless.

D. Uncertain-sig

Definition. All Bitcoin operations of signature verification
need public keys as parameters. In addition, the multi-signature
verification will need the number of required signatures as a
parameter. If the output script uses such operations without
the parameters, then the script is with an uncertain-sig defect.
It is attacker-spendable since anyone can input the parameters
to steal the bitcoins.



Example. As an on-chain example, one transaction [3] pays
0.001 BTC to a Pay-to-Script-Hash script. However, the exact
executing script of it is only “CHECKMULTISIG”, without
any numbers or parameters of public keys. In this case, any
attackers giving the parameters can spend it.

E. Impossible-key

Definition. Bitcoin has no restrictions on the public key in
the script. Therefore, the user can use any public key to verify
the signature in the script. However, not all public keys have
matching private keys. Some public keys (e.g., all byte is 1)
are impossible to have a private key. Scripts that require an
impossible public key to verify will never be spent.

Example. For an real example, one transaction [4] pays
100 BTC to a non-standard script. The UTXO is “DUP
HASH160 PUSH 0 EQUALVERIFY CHECKSIG”. In this
script, CHECKSIG requires a public key, the hash of which
must be 0. And this is the only way to pass the script execution.
The current computers have to try infinite private-keys to get
such “0” public-key-hash. The probability of generating such
a 256-bit key is 1

2256 , which is nearly impossible for current
computers. Hence, the UTXO cannot be spent.

F. Never-true

Definition. The script will never return “True” at the top
of the stack that its Bitcoin will never be spent. Therefore,
in this paper, all Nulldata scripts with non-zero amounts are
considered vulnerable. However, some of them are actually in-
tentional, for a protocol called Proof-of-Burn [46]. Moreover,
a number of non-standard scripts are also never-true, which
will be shown in §VI-C.

Example. As an on-chain example, one transaction
[5] pays 0.0001 BTC to the a non-standard
script. The script is “DUP HASH160 PUSH
dc353b35d11614e1678d6607a2908f68eb76a007
EQUALVERIFY CHECKSIG PUSH 0”. Because 0 is pushed
in the end, the final stack top value of this script can only be
0, which is never-true.

Note that the never-true scripts are with 0% possibility to
be spent, but the impossible-key scripts are with more than
0% possibility (if we can calculate out the private key, such
as using the quantum computer in the future). Thus they are
exclusive.

It is worth noting that three of the above defects are inspired
by the community, not copied from the community. As for
the simple-key, [43] has studied the key generated by brain-
wallet (e.g., English Words), but we study the key as simple
integers (e.g., 123). Thus the keys are exclusive between [43]
and ours since they are from different perspectives. As for the
unbinded-txid, [10] only shows the pattern of “OP Hash160
OP Equalverify”, but [10] does not consider it unsafe. And
our definition of unbinded-txid is also beyond this pattern
in [10] (e.g., “OP DUP OP DROP” is also unbinded-txid).
As for the never-true, [10], [17] only show the bitcoins with
“OP RETURN” are unspent, but our definition of never-true
is beyond this in [10], [17] (e.g., (x < 1 && x > 1) is also
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never-true). Hence, our three definitions are inspired by [10],
[43], [17] but with obvious differences

IV. DEFECT DETECTION

After defining six defects of Bitcoin scripts, we will first
propose a naive solution to partially detect them, and then
propose an advanced method based on symbolic execution and
historical exact scripts.

A. Naive Solution: Address-based Method

As mentioned in §II-B, the Bitcoin community defines seven
standard types of scripts. The semantics of standard scripts
can be learned by regular expressions and decoded Bitcoin
addresses. Bitcoin clients provide the interface to calculate
the address of the standard scripts. Using the interface, we can
check whether a script is with simple-key or impossible-key
through addresses by enumerating simple and impossible keys.
We can also check whether a script is a non-zero Nulldata
script. We name this solution as the address-based method
and also implement it in the later evaluation.

This naive solution has two shortages. First, it cannot
deal with non-standard scripts. Thus it cannot cover all the
defects. Second, as mentioned in §II-B, the Pay-to-Script-Hash
(P2SH) and Pay-to-Witness-Script-Hash (P2WSH) scripts only
record the hash of the exact executing script. Therefore, for
a P2SH or P2WSH script, the address-based method and
even the previous symbolic tool [29] cannot work. Hence, we
propose a method based on symbolic execution and historical
transactions to solve these two problems.

B. Overview

Figure 5 gives an overview of our defect detection approach
that consists of the following four steps.
Conducting Exact Script DB. Since a Bitcoin transaction
(TX) input includes a pointer to a previous TX output, if
we want to get the script from which the bitcoins are paid,
we need to refer to the previous TX output, especially for
the P2SH/P2WSH script that splits into 2 TXs. We design a
cache-based method to process the raw TXs to a database of



TABLE III
WORDS IN EXPRESSION OF SYMBOLIC PATTERNS

Words Description
Sall All generated symbolic stacks.
Si The i symbolic stack.
Ball All branches after symbolic execution.
Bi The i branch of the final branches.

Constraintsb A list of constraints for branch b.
SAT Whether there is a satisfying

UNSAT assignment or not.
Modelb Satisfying assignment of Constraintsb.
Mk The k assignment in model M .

Mk.Parameters The needed parameters of Mk.
Mk.T ype The symbol type of Mk.
Mk.V alue The assigned value of Mk.

txid The id of the spending transaction.
SigTypes The symbol types of CHECKSIG

and CHECKMULTISIG.

the P2SH/P2WSH outputs. It caches the latest UTXOs in the
memory to speed up processing.
Finding Exact Script. Once the same P2SH or P2WSH script
has been ever spent, we obtain the exact script by looking up
and decoding the input script, of which the UTXO script is
the same as the evaluating script. In addition, there are several
P2SH-P2WSH-* scripts in Bitcoin; thus, we first decode P2SH
and then P2WSH. The scripts which are not P2SH or P2WSH
are regarded as an exact script for the symbolic engine.
Symbolic Execution. The exact script will be executed in
our symbolic engine. The symbolic engine uses the symbolic
stacks to execute the script. The parameters of the transactions
and some non-linear operation results are also provided as
symbols. For each conditional operation, it generates a new
symbolic state. Finally, it obtains several branches and corre-
sponding constraints as the execution results. After that, the
constraints are checked by the SMT Solver to decide whether
the branch is possible. The details of the symbolic engine for
Bitcoin scripts are described in § IV-C.
Pattern Matching. Based on the execution results, including
the symbolic branches, constraints, and models, we use sym-
bolic patterns to detect the defects. A script is regarded as
having a defect if the symbolic execution result matches the
pattern.

Note that in the following we refer to this advanced method
simply as the symbolic method. It includes not only symbolic
execution but also the historical exact script enhancement and
defect patterns.

C. Symbolic Engine

The main idea of symbolic execution is to use symbols to
replace the unknown input of the program, thereby knowing
the execution semantics of the program, using SMT solvers or
other methods for further judgment. We set the following un-
known variables as symbols: stack given by the unknown input
script, transaction parameters, results of non-linear operations,
etc. We describe our symbolic engine as follows.
Architecture. The symbolic engine holds a list of stacks
(“state” in traditional symbolic execution). Each stack is

equipped with its constraints and current program counter. The
symbolic engine executes operations for each stack and then
keeps their final status for further detection.
Operational Semantics. The operational semantics can be di-
vided into “Flow-control”, “Stack”, “Splice”, “Bitwise-logic”,
“Arithmetic”, “Crypto”, “Locktime”, “Reserved-words”, de-
fined in the community wiki [17], and our implementation
follows these semantics.
Symbolic Bitcoin Stack. As mentioned in Section II, the
output script is executed after the input script. In this case, the
input script might leave some unknown stacks for the output
script. Therefore, those left stacks are provided as symbols if
needed for execution.
Transaction Parameter. In the Bitcoin script engine, several
operation codes support the script to obtain the parameters
of the transaction input: nLockT ime, nSequence, and txid.
Therefore, these parameters are provided as symbols if needed
for execution.
Non-linear Operation. There are also several hash func-
tions and signature verification functions in Bitcoin (e.g.,
HASH160, SHA256, CHECKSIG, etc.). As for these
non-linear operations, the SMT solver (Z3) cannot check
the non-linear constraints. Hence, the operation results are
provided as symbols. And the parameters (e.g., pre-image,
public-key, etc.) are attached to these symbols for further
pattern matching. In this way, although the symbolic engine
cannot exactly act as the actual non-linear operation, the details
of the operation are preserved for further detection.
Conditional Operation. Several Bitcoin operation
codes will trigger conditional operation, e.g., EUQAL,
GREATERTHAN , IF , etc. When executing such
operation codes, the symbolic engine will come out with
two symbolic states with different constraints appended. And
then, both branches continue the next operation.
Spendable Constraint. Finally, each branch appends a con-
straint that the top of the stack is true. This is the spendable
condition of the Bitcoin script. In this case, the branches can
be checked by the SMT solver to find whether they can spend
the Bitcoin.

D. Symbolic Patterns
After the symbolic execution of the specific Bitcoin script,

we obtain the results, including symbolic stacks, branches,
constraints, and models. Based on these results, we use the
following patterns to check the defects. The patterns are
presented as several symbolic expressions, in which the terms
are described in Table III.
Unbinded-txid. As shown in Eqn. (1), if there is a branch
Bi that can find the satisfying assignments, and all the
assignments (Mk) in ModelBi

do not need the txid (the
parameters of Mk do not include txid), then this script is with
the unbinded-txid defect.

∃Bi ∈ Ball → ConstraintsBi 7→ SAT,

∀Mk ∈ModelBi → txid /∈Mk.Parameters
(1)

Simple-key. As shown in Eqn. (2), if there is a spendable
branch Bi that is using the public-key (Mk.Pubkey) that



belongs to a dictionary of the public-key of simple private-
keys (SimpleKeys), then the script is considered to have the
simple-key defect.

∃Bi ∈ Ball → ConstraintsBi 7→ SAT,

∃Mk ∈ModelBi →Mk.Pubkey ∈ SimpleKeys
(2)

Useless-sig. As shown in Eqn. (3), if there is a spendable
branch Bi and one of its satisfying assignments (Mk) is to
assign the symbol of SigTypes to 0, then this script uses
useless-sig, leading to defect.

∃Bi ∈ Ball → ConstraintsBi 7→ SAT,

∃Mk ∈ModelBi →
{
Mk.T ype ∈ SigTypes,

Mk.V alue = 0

(3)

Uncertain-sig. As shown in Eqn. (4), if there is a spendable
branch Bi that one of its satisfying assignments is related to
the symbol of SigType, and the parameter of this symbol
depends on the symbolic stack Si, then this script is with
the uncertain-sig defect. The symbolic stack Si refers to a
result stack left by the input script. Hence, for example, once
a public-key of “CHECKSIG” in the output script depends on
such Si, the parameter (public-key) is given by the input script
instead of the output script. Therefore, the output script uses
“CHECKSIG” without giving the parameter (public-key) by
itself, but by the input script.

∃Bi ∈ Ball → ConstraintsBi 7→ SAT,

∃Mk ∈ModelBi →
{

Mk.T ype ∈ SigTypes,
∃Sj ∈ Sall, Sj ∈Mk.Parameter

(4)

Impossible-key. The pattern of impossible-key is shown in
Eqn. (5). For a Bitcoin script with an impossible-key defect,
it must have a spendable branch Bi that all the public-keys
Mk.Pubkey in the parameters of the assigned symbols are
impossible. We define the “IsPossible()” function by checking
whether more than half of the bytes of the public-key or
the public-key-hash are the same, returning false if so. In
Bitcoin, the public-key is generated from the private-key by
cryptographic algorithms. Therefore, the bytes in the public-
key are guaranteed to be random and uniform, so as the bytes
in its hash value (public-key-hash). If a user wants a certain
form of public-key (e.g., prefixed with “2022...” or “abcd...”),
he can only try a lot of private-keys. Since the probability
of each byte is random and uniform, for a certain byte (e.g.,
“0x22”), the more times it appears in the public-key (e.g.,
“0x22222222...”), the lower the probability of generating this
public-key. Hence, once half of the bytes are the same in
such a 256-bit public-key ( 2562 = 128 bits), the probability
of generating such a key is 1

2128 , which is nearly impossible.
In addition, for the remaining branches Bj that do not have
the above characteristic, they must be unsatisfying. If the script
is matched with this pattern, then it is considered to have an
impossible-key defect.

∃Bi ∈ Ball → ConstraintsBi 7→ SAT,

∀Mk ∈ModelBi → IsPossible(Mk.Pubkey) = False,

∀Bj ∈ (Ball − {Bi})→ ConstraintsBi 7→ UNSAT,
(5)
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Never-true. As shown in Eqn. (6), if all the branches have
no satisfying assignment, the script is regarded as a never-true
script.

∀Bi ∈ Ball → ConstraintsBi 7→ UNSAT (6)

V. EXPLOITATION TRACING

In order to verify and trace the exploitation of the detected
defects, we propose the exploitation tracing method.

A. Overview

Figure 6 shows the overview of the exploitation tracing
method. It consists of the following steps.
Spending TX Tracing. First, we use an on-chain monitor
to trace the inputs and outputs of each raw transaction (TX).
Once it finds that a detected buggy script is being spent, it will
trace this spending transaction. Hence a trace is represented
as a tuple of an output script and a spending transaction.
Instrumented Script VM. We instrument the Bitcoin VM to
record the traces of the spending transactions. Towards each
transaction, it traces the operation (OP) codes and stacks for
each step of execution. The trace is like the example shown
in Table II.
Rule-based Verification. We define several exploiting rules
to check whether the exact buggy scripts are exploited. The
rules are case by case, corresponding to the four proposed
attacker-spendable defects (which will be introduced in the
next subsection). Note that there are no exploiting rules for the
never-spendable defects. Because the never-spendable outputs
theoretically will not be spent. In other words, once there
are any spent traces of the never-spendable outputs, then our
detection will be proved wrong. In this way, we can find
whether the real-world execution paths exploit the defects.

B. Exploiting Rules

Corresponding to the definition in §III, the exploiting rules
are as follows.
Unbinded-txid. During the whole execution of the spending
buggy output, the VM does not operate CHECKSIG,
CHECKMULTISIG, CHECKSIGV ERIFY , or
CHECKMULTISIGV ERIFY . If so, the unbinded-txid
defect in the previous output is regarded as exploited.



Simple-key. Once the VM loads a simple key to the stack
for CHECKSIG∗ operations, the simple-key defect in the
spending output is regarded as exploited.
Useless-sig. After executing CHECKSIG or
CHECKMULTISIG operations, the top of the stacks
is FALSE. It means that the signature is wrong, but the
output is still successfully spent (exploited) on the Bitcoin
blockchain.
Uncertain-sig. When executing CHECKSIG∗ operations,
the key parameters in the stacks are not from the output scripts,
including the value, number, or hash value of the public key
and signature. If so, the uncertain-sig defect in the previous
output is regarded as exploited.

More details of the rules can be found in our source code
at UnsafeBTC.com.

VI. IMPLEMENTATION AND EVALUATION

This section first describes our implementation of
BSHUNTER. And then, it introduces our empirical study of
detecting and tracing defects in real-world Bitcoin scripts in
order to help Bitcoin users/developers to prevent losing their
bitcoins.
Implementation. First, we implement the detecting and trac-
ing methods partially on BTCD v0.20.0-beta [27], one of the
Golang clients of the Bitcoin community. The added code in
exact script extraction and on-chain tracing is about 2,000
lines. Second, we implement the detecting and tracing methods
partially in Python. In the meanwhile, we also implement the
address-based method for comparison. As for the symbolic
engine of Bitcoin scripts, we use Z3 [20] to generate the
symbol and solve the SMT problems. The Python code in
defect detection and tracing is about 2,500 lines. In BSHunter,
the looking up of exact scripts is conducted with a key-value
dictionary in Python. The key is the address of the output script
(P2SH/P2WSH), and the value is the first transaction (TX) that
spends it. In this way, as for a specific P2SH/P2WSH output
script, we can find its first spending TX (the TX hash). And
then, in the Bitcoin full node, we query this TX hash to get and
decode the TX itself. In this way, we can get the input script.
As for the decoding, we decode the last item of the input script
as its exact script for P2SH. We also decode the last item of
the witnesses for P2WSH. This is just a simplified explanation.
Actually, in our implementation, we add caches to make it
faster. The detailed decoding codes have been open-source2.
In addition, the exact scripts on UnsafeBTC.com have already
been extracted and decoded in order to ease the validation.
Experimental Setup. All the experiments below are con-
ducted on a CentOs server, which is equipped with 1TB
Samsung SSD storage and an Intel i7-5820K CPU. Before
evaluation, it takes six days for our server to synchronize
with the Bitcoin blockchain to the highest block. Finally, we
synchronized the data of Bitcoin from 0 to 749,000 blocks (as
of August 11, 2022).

2https://github.com/InPlusLab/bshunter-btcd

Research Questions. Based on BSHUNTER, we conduct ex-
tensive experiments to answer three questions in the following
subsections:

RQ1: What is the effectiveness of our proposed methods
for defect detection?

RQ2: What is the exploitation status of Bitcoin scripts with
defects?

RQ3: Where are buggy scripts from, and how to avoid
them?

A. RQ1: Effectiveness of Defect Detection Methods

We evaluate the effectiveness of our defect detection method
of BSHunter in two ways: (1) the number of scripts that it can
support in RQ1-1; and (2) its advantage over the address-based
method in RQ1-2.
RQ1-1: How many scripts can BSHunter support?

After the extraction of Bitcoin scripts, we obtain
2,005,704,690 output scripts in total. We run BSHUNTER
to execute these scripts to see the feasibility. As a result,
the proposed symbolic engine can support all of them except
for 498,735 output scripts. The unsupported reasons are as
follows. (1) Path explosion. 924 unique scripts that use too
many “IF” and “CHECKSIG” operations generate a large
number of branches during symbolic execution, leading to
the path explosion problem that the engine cannot finish the
execution. (2) Uncertain stack movement. Bitcoin supports
moving the “n” item of the stack using PICK and ROLL.
There are 2 scripts where the “n” is a symbol that the symbolic
engine cannot execute it. (3) Latest Taproot soft-fork. Bitcoin
activated the Taproot soft-fork at the end of 2021 [31]. In our
experiment, 497,809 unique scripts use the Taproot, which is
not supported by BSHUNTER now. The Taproot output script
(P2TR) also records the hash of the exact script but only shows
partial branches of the exact script when being spent. Thus
one P2TR script might have different branches in different
historical transactions. But currently, our tool can only extract
the scripts in a single historical transaction for P2SH/P2WSH.
Therefore, we need further efforts to support script extraction
in multiple transactions for one P2TR.

Note that we do not use the coverage of code for evaluation.
The reason is that the Bitcoin script does not support the JUMP
or GOTO operation as other script languages. Its symbolic
execution must be from the beginning to the end or broken
by some unexpected errors. Hence, the coverage for a specific
script is either 100% or 0%, which is useless for evaluation.
RQ1-2: Is the symbolic method better than the address-
based method?
True Positives. Table IV shows that 383,544 scripts are
detected as positives. We check them in two ways: manual
checking and exploitation tracing. For the former, we first use
the address-based method to confirm 268,015 scripts. Then,
we filter out the scripts that do not include the “CHECKSIG*”
operations (obviously unbinded-txid). Note that the filtering is
not provided by the address interface of the Bitcoin clients,
thus not counted as the address-based method. For the remain-
ing unique scripts, we manually check them. We found all



TABLE IV
COMPARISON OF VULNERABLE SCRIPTS DETECTED BY SYMBOLIC

METHOD AND ADDRESS-BASED METHOD (RQ1-2)

Metric Defect Address* Symbolic* Gain

Count

Unbinded-txid 0 77,141 77,141
Simple-key 1,484 1,484 0
Useless-sig 0 38,284 38,284
Uncertain-sig 0 43 43
Impossible-key 205,284 205,320 36
Never-true 61,247 61,272 25
Total 268,015 383,544 +43%

BTC

Unbinded-txid 0 55.67 55.67
Simple-key 21.89 21.89 0
Useless-sig 0 0.21 0.21
Uncertain-sig 0 0.25 0.25
Impossible-key 392.92 3,002.28 2609.36
Never-true 35.115 35.120 0.005
Total 449.92 3,115.43 +592%

detected positives are correct, which means there are 0 false
positives. For the latter, we trace the spending transactions for
the positives. This provides real-world exploitation evidences,
which will be described in the next subsection (RQ2). All
evidences are available on our website. The threat is discussed
in §VII.
Comparison. Table IV shows the comparison of scripts de-
tected by the symbolic method and address-based method.
In this table, we measure the count and amount of bitcoins
(BTC) for different defects. The result of the symbolic method
includes not only the buggy scripts matched by the address-
based method, but also more non-standard buggy scripts. We
use “Gain” to evaluate the increment from the non-standard
scripts in this table. We can observe that, for all defects except
simple-key, the symbolic method has improved to varying
degrees compared with the address-based method. Moreover,
the symbolic method can detect the unbinded-txid, useless-
sig, and uncertain-sig scripts, while the address-based method
cannot. The reason is that these three defects do not exist in
standard scripts. The threat to this comparison is also given in
§VII.

Answer to RQ1. In total, the count of defects detected
by the proposed method is increased by 43% compared
with the address-based method. The amount of BTC of the
defects detected by the proposed method is increased by
592% compared with the address-based method. The largest
part of the increment (2609.36 BTC) comes from the 23
impossible-key scripts, which will be studied empirically as
well as other typical scripts in the RQ3.

B. RQ2: Exploitation Tracing of Buggy Scripts

Next, we will trace the detected buggy Bitcoin scripts to
answer RQ2. We study the buggy scripts in view of spent
status (RQ2-1) and exploitation evidences (RQ2-2).
RQ2-1: How many buggy scripts have been spent?

We use our proposed exploitation tracing method to see their
status. The results are shown in Table V.

TABLE V
SPENT STATUS OF DETECTED BUGGY SCRIPTS (RQ2-1)

Defect # Spent (BTC) # Unspent (BTC)
Unbinded-txid 76,580 (54.02) 561 (1.65)
Simple-key 1,484 (21.89) 0
Useless-sig 37,782 (0.206) 502 (0.007)
Uncertain-sig 43 (0.25) 0
Impossible-key 0 205,320 (3,002.28)
Never-true 0 61,272 (35.12)

TABLE VI
TRACES OF SPENT ATTACKER-SPENDABLE SCRIPTS (RQ2-2)

Defect # Exploited (BTC) # Non-Ex’ (BTC)
Unbinded-txid 76,566 (53.82) 14 (0.20)
Simple-key 1,484 (21.89) 0
Useless-sig 6,045 (0.067) 31,737 (0.139)
Uncertain-sig 35 (0.249) 8 (0.001)

Attacker-spendable. As for the attacker-spendable scripts,
most of them have been spent. Especially all the simple-key
and uncertain-sig scripts have been spent. The amount of the
spent scripts is 76.37 BTC in total, which is around $1,500,000
now. We also check the remaining unspent attacker-spendable
scripts for why they remain. As for the 1.65 BTC in unbinded-
txid scripts, 1 BTC is in a script that requires the input for
a pre-image of a hash value, which is unknown to attackers.
However, once the owner wants to spend the script, it will
broadcast the input to the network then the attackers can steal
the 1 BTC, as described in Figure 3. The other 0.65 BTC in
unbinded-txid is divided into 560 scripts with small amounts.
Some of them are even not enough to pay the transaction fees
and thus remain. As for the 502 unspent useless-sig scripts,
3 of them are the same as the examples in §III-C. The other
499 scripts are all like “PUSH <pubkey> CHECKSIG IFDUP
NOTIF 16 CHECKSEQUENCEVERIFY ENDIF”, and their
amounts are all smaller than 0.00001 BTC, which is vulnerable
but not so valuable for attacks. These are mainly caused by the
lightning network [39] transactions, which could be studied in
future work. We will further trace the spending transactions
in RQ2-2 to provide more exploitation evidences.
Never-spendable. As shown in Table V, none of the
impossible-key and never-true scripts as been spent. On the
other hand, this also provides evidence that confirms the
effectiveness of the proposed methods in detecting never-
spendable positives.
RQ2-2: Are the defects exploited?
Exploited Scripts. As shown in Table VI, almost all the
valuable scripts that have defects are exploited. The proportion
of exploited amount of bitcoins is 53.82+21.89+0.067+0.249

54.02+21.89+0.206+0.25 =
76.026
76.366 = 99.6%. Note that the “Non-Exploited” scripts are
not so valuable, indicating why they are not exploited. Since
the Bitcoin network is anonymous, we cannot exactly confirm
whether they are “stolen” by attackers or owners. However, the
exploitation traces of spending paths sincerely provide strong
evidences for the detected defects.
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Answer to RQ2. As shown in the tracing results, most
detected attacker-spendable scripts have been spent. Of the
76.366 BTC worth of spent outputs, a total of up to 99.6%
of the BTC amount from the buggy scripts was traced as
being exploited. In addition, none of the detected never-
spendable scripts has been spent, which laterally proves the
effectiveness of the detection method.

C. RQ3: Empirical Study of Buggy Scripts

We also traverse the historical Bitcoin transactions to answer
RQ3.
Professional Developer v.s. Ordinary User. First, we pro-
vide the distribution of script types in order to learn which
type of users the defects mainly come from, as shown in
Figure 7. In this figure, the mentioned script types in §II-B are
respectively abbreviated as P2PK, P2PKH, MULSIG, P2SH,
P2WPKH, P2WSH, NULLDATA, and NONSTD. The Non-

standard (NONSTD) scripts can be embedded in the exact
scripts of the P2SH and P2WSH scripts. Thus there are P2SH-
NONSTD and P2WSH-NONSTD scripts. As the figure shows,
the scripts with unbinded-txid, useless-sig, and uncertain-sig
are mainly NONSTD-related, in the measurement of both
count and amount of bitcoins (BTC). In the meanwhile, for
ordinary users, the mainstream Bitcoin wallets (e.g., Bitcoin-
core) do not provide a user-familiar feature to conduct the
NONSTD-related outputs. Only those developers with relevant
Bitcoin knowledge can conduct them. Hence, these scripts are
considered from developers. On the contrary, as for the scripts
with simple-key, impossible-key, and never-true, it is easy
for ordinary users to construct them by wallets. In summary,
ordinary users created more buggy scripts than professional
developers, but the scripts involved less amount of bitcoins.

Typical Defects. Among the six proposed defects, we found
that four defects involve the most amount of BTC: unbinded-
txid, simple-key, impossible-key, and never-true. Therefore, we
provide the cumulative statistics of them to understand the
occurrence of buggy scripts in different periods, as shown in
Figure 8.

As for the unbinded-txid shown in Figure 8(a), we
observe a rapid growth of BTC from block #460000
to #500000. During this period, scripts with a total of
32.06 BTC use “PUSH 1” as the exact executing script,
which is spendable by any input script. The address is
“3J98t1WpEZ73CNmQviecrnyiWrnqRhWNLy” and unknown
users still conduct output scripts to it in February 2023.

As for the simple-key scripts shown in Figure 8(b),
the occurrence is continuous. The most used simple pri-
vate key is the key “1”. 1,126 output scripts are con-
trolled by this simple key. As the scripts are stan-
dard, they can be represented as the Bitcoin address
“1EHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm”. This private
key’s scripts have received a total of 7.82 BTC, which has been
fully spent.

As for the impossible-key scripts shown in Figure 8(c),
we observe a rapid growth of the amount of bitcoins in the
period from block #150000 to #160000. In this period, 23
non-standard scripts are with the code example in §III-E. The
amounts of the scripts vary from 21 to 497 [6] BTC, which are
counted as 2609.36 BTC in total. The example impossible-key
script (as the second output in the link of [4]) that is Non-
standard to conduct an address. Hence, they are not detected
by the address-based method.

As for the never-true scripts shown in Figure 8(d), we can
also observe a rapid growth of BTC from block #650000 to
#700000. In this period, 155 valuable nulldata scripts that
record a string as “07ffff” joint with an Ethereum address
[7]. The total amount of the 155 scripts is 23.329 BTC. Since
they return the Ethereum addresses and burn such BTC (over 1
million dollars), we infer that they might be used to mint new
tokens on Ethereum (e.g., Non-Fungible Token). However, to
the best of our knowledge, there are no related reports.



Answer to RQ3. The above observation shows how buggy
scripts are generated and exploited. We come out with some
suggestions for Bitcoin users and developers: (1) Users
should not generate private keys through simple numbers
or strings. (2) Users should not carry bitcoins in data stor-
age scripts that are constructed through operations such as
RETURN . (3) Developers should use verification methods,
including symbolic execution, to prevent their scripts from
the above defects.

VII. THREAT TO VALIDITY

Validity of Definition. The impact of Bitcoin script defects
depends on our understanding, which could be different for
different users/researchers. In this paper, we consider those
defects that make the user lose control of payment as our
target. However, things go differently once the scenario is
not the payment but the storage or others. Moreover, as
mentioned, our definitions are inspired by the examples from
the community and our own survey, which might not be
complete. There might be other uncovered cases where a user
loses control. But we claim that the definitions are sound as
those defects do make users lose control of bitcoins.
Validity of Detection. Our detection method depends on
symbolic patterns. Although our experimental results show
the feasibility and the true positives, there could be some
false negatives. In other words, the detection results are
sound but may not be complete. For example, there might
be other unknown simple private keys that are not detected.
Our method can also be applied to those situations. However,
it needs further effort and more computing resources, such
as extending the exploitation tracing method to trace all the
on-chain transactions.
Validity of Evaluation. As shown in Table IV, the major
gain of the amount of BTC is impossible-key, while the
unbinded-txid and useless-sig only contribute around 56 BTC.
As mentioned in §VI-C, the 23 impossible-key scripts caught
by BSHUNTER contain a large amount of BTC. Hence it is
a threat to the validity of the evaluation.

VIII. RELATED WORK

Bitcoin data tools. BlockSci [28] is a tool for analyzing the
raw data from the Bitcoin client. BitcoinETL [33] allows users
to export the Bitcoin blockchain data. Google BigQuery [19] is
an analytics platform for users to query Bitcoin data. There are
many websites providing API for users to get the Bitcoin data,
e.g., BTC.COM [14], Blockchain.Info [11], etc. Unfortunately,
most tools only provide Bitcoin addresses to users.
Bitcoin data analysis. Previous research analyzes Bitcoin in
the view of blockchain [26], [24] and transaction [41], [23],
[38], [15], [47]. For Bitcoin scripts, Rajput et al. [40] provide
a solution to the vulnerability of transaction malleability.
Bistarelli et al. [10] study the Nonstandard scripts, and Klomp
et al. [29] propose SCRIPTAnalyser as a method of symbolic
verification for the Bitcoin scripts. Matzutt et al. [32] analyze
the impact of arbitrary content on Bitcoin with more than
1600 files. Strehle et al. [42] also study the Nulldata scripts.

Note that previous studies, including the standard examples
in Bitcoin Wiki [17], inspire the definition of three defects in
this paper. However, none of these studies focus on detecting
the defects of Bitcoin scripts. The work most related to us
is SCRIPTAnalyser [29], as it also uses symbolic execution.
The differences are as follows. First, SCRIPTAnalyser is used
for inferring input, not for defect detection or exploitation
tracing. Not all the patterns that we define in BSHunter can
be detected through the output in SCRIPTAnalyser, e.g., the
checking of the private-key or public-key. Hence if we want
to apply BSHUNTER on SCRIPTAnalyser, we also need
to modify SCRIPTAnalyser for defect detection. However,
SCRIPTAnalyser is conducted with Haskell, which is a lan-
guage so inexperienced to us that we were unable to modify
SCRIPTAnalyser. Second, SCRIPTAnalyser does not support
those P2SH and P2WSH scripts since it cannot obtain the
historical exact scripts. As shown in the monthly statistics
on BTC.com, P2SH scripts took up 45% of all scripts in
August 2022 [8]. Hence, it cannot detect and trace the defects
studied in this paper. Moreover, Bitcoin Wiki [18] also shows
the defects of Bitcoin clients instead of Bitcoin scripts. Since
those defects cause abnormalities in the client, they have been
fixed. However, the defects in this paper DO NOT cause the
abnormality in the client. They are executed normally but
cause users’ loss.
Smart contract defects. Although some recent studies exam-
ine defects and vulnerabilities in Ethereum smart contracts
[25], [30], [37], [22], [16], they cannot be applied to this
study because of the differences between Bitcoin scripts and
Ethereum contracts. Moreover, the UTXO model in Bitcoin is
also very different from the contract model in Ethereum.

IX. CONCLUSION

In this paper, we design and develop BSHUNTER to
conduct the first systematic study on defects of Bitcoin scripts.
First, we define six types of defects in Bitcoin scripts. Second,
we propose a symbolic and historical approach to detecting
Bitcoin scripts with defects. Third, we design an exploitation
tracing method to verify and trace the detected defects. The
extensive experimental results demonstrate the feasibility and
effectiveness of BSHUNTER. Moreover, we obtained new
observations by applying BSHUNTER to all on-chain Bitcoin
scripts. We found 383,544 buggy outputs that are related to
3,115.43 BTC in total. We provided empirical tracing results
of them.

DATA AVAILABILITY

We provide the source codes and results on our website
https://UnsafeBTC.com.
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